
Naval Research Laboratory
Washington, DC 20375-5320

NRL/MR/5510--07-9022

Integration of Two SPAWAR PEOC4I
NetCentric Technologies:
Tactical Environmental Database Services
(TEDServices) With the Extensible Tactical
C4I Framework (XTCF)

January 12, 2007

Approved for public release; distribution is unlimited.

TimoThy h. Bowers

Navy Center for Applied Research in Artificial Intelligence
Information Technology Division

i

 REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

3. DATES COVERED (From - To)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

10. SPONSOR / MONITOR’S ACRONYM(S)9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR / MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area
code)

b. ABSTRACT c. THIS PAGE

18. NUMBER
OF PAGES

17. LIMITATION
OF ABSTRACT

Integration of Two SPAWAR PEOC4I NetCentric Technologies:
Tactical Environmental Database Services (TEDServices) with the Extensible Tactical C4I
Framework (XTCF)

Timothy H. Bowers

Naval Research Laboratory, Code 5513
4555 Overlook Avenue, SW
Washington, DC 20375-5320

NRL/MR/7210--07-9022

Approved for public release; distribution is unlimited.

Unclassified Unclassified Unclassified
UL 27

Timothy H. Bowers

(202) 404-3924

This paper outlines work that was completed to assist the warfighter during the critical mission planning process. This was accomplished by
delivering current weather data from Tactical Environmental Data Services (TEDServices), an API used to request meteorological, oceanographic,
and environmental information, through the Extensible Tactical C4I Framework (XTCF), which is a prototype extensible data management
framework implemented in Java. It includes discussion of relevant technologies, such as XML and JMS.

12-01-2007 Memorandum Report

NetCentric
XTCF

TEDServices
XML

May 2005 - Oct 2006

55-7188

Office of Naval Research
875 North Randolph Street
Arlington, VA 22203-1995

JMS

0602235N

N0001406WX20076

iii

TABLE OF CONTENTS

Section Page

1 INTRODUCTION .. 1-1

2 RELEVANT TECHNOLOGIES .. 2-2
2.1 EXTENSIBLE MARKUP LANGUAGE (XML) ... 2-2
2.2 JAVA MESSAGE SERVICE (JMS).. 2-3

3 ARCHITECTURE.. 3-4

4 SYSTEM REQUIREMENTS.. 4-5
4.1 XTCF SYSTEM REQUIREMENTS.. 4-5
4.2 TEDSERVICES SYSTEM REQUIREMENTS.. 4-6

5 INSTALLATION.. 5-6
5.1 INSTALL TEDSERVICES [5]... 5-6

5.1.1 Install SSL Certificate [5] ... 5-7
5.2 INSTALL XTCF.. 5-7

5.2.1 JBoss Setup [7] ... 5-8
5.2.2 Setting Delayed Expansion [7] ... 5-9
5.2.3 Building XTCF [7].. 5-9

5.3 INSTALL PLUGINS.. 5-9

6 WORK FLOW.. 6-10

7 DATA... 7-15

8 TROUBLESHOOTING TIPS ... 8-17

9 REFERENCES ... 9-18

APPENDIX A. ACRONYM LIST.. 9-19

APPENDIX B. EVISMESSAGE.JAVA... 9-20

iv

TABLE OF FIGURES

Figure Page

Figure 2-1. Java Message Service (JMS) [6] .. 2-3

Figure 3-1. Architecture Diagram... 3-5

Figure 6-1. JBoss Started .. 6-11

Figure 6-2. Reply Plug-In Listens for Request Messages... 6-11

Figure 6-3. EVIS Request GUI... 6-12

Figure 6-4. Request Plug-In Sends Request Message .. 6-13

Figure 6-5. EVIS Receives and Returns TEDs Data .. 6-14

Figure 6-6. TEDs Data Received and Displayed in GUI.. 6-15

Figure 7-1. Grid Data Display ... 7-16

1-1

Integration of two SPAWAR PEOC4I NetCentric Technologies:
Tactical Environmental Database Services (TEDServices) With the
Extensible Tactical C4I Framework (XTCF)

1 INTRODUCTION
We are currently living in the information age. Information is readily available on the
web and can be accessed via web pages and web services. People log-on to the internet
everyday searching for information. With all the search engines and websites available it
can take hours to complete this search. Not everyone has the luxury of spending hours on
the internet searching for data. In order to make time critical decisions, they need
accurate information and they need it in a timely manner. For example, the warfighter
needs to have access to various types of information in order to complete time critical
tasks. This paper outlines work that was completed, which developed plug-ins to assist
the warfighter during the critical mission planning process by delivering current weather
data.

The first step in accomplishing this is to obtain useful and accurate weather information.
Obtaining information from another computer can be performed by the use of a gateway,
which controls access to the information by ensuring certain protocols and procedures are
followed. Tactical Environmental Data Services (TEDServices) has created an
Application Program Interface (API) that allows users to connect to a TEDServices
gateway to request meteorological, oceanographic, and environmental information for
various parameters. The plug-ins outlined in this paper use this API and connect to a
TEDServices gateway to retrieve data.

After the data has been obtained, it needs to be delivered to the warfighter in an efficient
and reliable manner. It is possible to communicate information by using a messaging
technology. JAVA has developed an API for messaging called Java Messaging Services
(JMS), which is discussed in more detail in section 2.2. The plug-ins, described in this
paper, use the JMS API via the Extensible Tactical C4I Framework (XTCF). XTCF is a
prototype extensible data management framework implemented in Java for the basic
distribution of information objects to the warfighter using core, standards-based
discovery, subscription, and publication building blocks of the Web Services model. The
goal of the XTCF project is to provide the warfighter with a flexible, extensible
framework that could support near real time delivery of information composed to meet
specific mission requirements. The capabilities of this prototype were displayed in a
limited technology experiment, which was conducted in June 2004. The results from this
experiment are published in Filanowitcz [3].

Manuscript approved November 8, 2006.

2-2

2 RELEVANT TECHNOLOGIES
This section provides an overview of relevant technologies that may be applicable when
developing XTCF and TEDServices plug-ins.

2.1 EXTENSIBLE MARKUP LANGUAGE (XML)
XML, the Extensible Markup Language, is a W3C-endorsed standard for document
markup [4]. This standard allows for the markup of data with human-readable tags which
are similar to html. It provides a standard format that can be customized for various
domains and can be used to exchange data on and off the web. It has become ubiquitous
and a variety of tools are readily available for generating, parsing, and processing XML
data [8]. In general XML is made up of nested elements that begin with a start tag
(<ElementName>) and end with an end tag (</ElementName>), which is shown below.

.

<address>

 <street>1234 Maple Street</street>

 <City>Atlanta</City>

 <State>Georgia</State>

 <Zipcode>30301</Zipcode>

</Address>

The flexibility of XML allows users to define the structure of their documents. This
structure is defined in an XML Schema Document (XSD) file. The following is an
example of an XSD file that was used with these plug-ins.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:evis.samples.xtcf"
 xmlns="urn:evis.samples.xtcf">
 <xs:complexType name="EVISMessage">
 <xs:sequence>
 <xs:element name="FileName" type="xs:string" default=""/>
 <xs:element name="FileContent" type="xs:hexBinary" default=""/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="EVISMessage" type="EVISMessage"/>
</xs:schema>

Messages in XTCF can be defined by an XSD. The XTCF SDK uses a utility called
codegen. Codegen is a command line utility that will translate XML Schema based
messages into code [8]. It is a java program that is executed by running a batch file that
when executed creates java code from the XSD. More information on using codegen can

2-3

be found in the Developers Guide for the XTCF SDK. The file that was created using
codegen on the above XSD can be found in Appendix B.

2.2 JAVA MESSAGE SERVICE (JMS)
The Java Message Service is a Java API implemented by enterprise messaging vendors to
provide Java applications with a common and elegant programming model that is
portable across messaging systems [2]. This API defines a common set of programming
strategies that will support all JMS compliant messaging systems. It is a powerful tool
that allows applications to exchange critical information in a reliable and asynchronous
manner. Therefore, Messages can be delivered to systems not currently running and
processed when convenient [8]

Figure 2-1 shows the relationship of the classes and interfaces in the Java Message
Service (JMS) API. Developers use these classes and interfaces to create a JMS
application [6]. The finished application will need to create a connection, which allows a
producer and consumer to send messages back and forth using the JMS API.

Figure 2-1. Java Message Service (JMS) [6]

3-4

There are two common programming models supported by the JMS API: publish-and-
subscribe and point-to-point [2]. The plug-ins that were developed for this research use
the publish-and-subscribe programming model. This model uses a virtual channel called
a topic to exchange messages. The publisher sends a message on a specific topic. Then
any plug-in that subscribes to this topic can receive the message. The point-to-point
programming model uses queues. A message posted to a queue is only intended for a
single consumer [8].

In XTCF, a messaging system is used to provide the necessary asynchronous exchange of
messages between plug-in components [8]. A messaging system is referred to as a
broker. A free version of JBoss was used as the broker for the development of these
plug-ins, but earlier versions of these plug-ins were tested using JBoss, SonicMQ, and
BEA WebLogic.

3 ARCHITECTURE
The plug-ins have ten main files, two for the messages (MetOcRequestMessage.java and
MetOcMessage.java), five for the MetOc Data Consumer (MetOcRequestGUI.java,
MetOcRequestSender, MetOcReplyReceiver, MetOcReplyListener and
MetOcReplyGUI), and three for the MetOc Data Provider (MetOcRequestReceiver.java,
MetOcRequestListener.java and MetOcReplySender). The relationship and interactions
of these files are depicted in figure 3-1. The MetOc Data Consumer sends a request for
data to the MetOc Data Provider. When the MetOc Data Provider receives this request, it
sends a request for the same data to TEDServices and then waits for a reply. Once the
MetOc Data Provider has received the data from TEDServices, it then sends this data to
the MetOc Data Consumer.

The request for data from MetOc Data Consumer is sent in a MetOcRequestMessage
object on a METOCREQUEST topic. When the data is returned it is in a MetOcMessage
object, which was sent on the METOCREPLY topic. MetOcMessage.java was
automatically generated using XTCF codegen Version 1.2. It is used to return the data
that is received from TEDServices. The same file was edited and renamed
(MetOcRequestMessage) to send requests for MetOc data. The MetOcMessage and
MetOcRequestMessage class objects represent Java runtime instantiations of XTCF
messages.

When you build the java files using ANT, two batch files are placed in the C:\XTCF\bin
directory. One is called runMetocDataConsumer and runMetocDataProvider, which run
the plug-ins. Before using them you need to ensure that the JMS (JBoss) provider is set
up correctly and running.

4-5

Figure 3-1. Architecture Diagram

4 SYSTEM REQUIREMENTS
This section provides an overview of the system requirements for the plug-ins.

4.1 XTCF SYSTEM REQUIREMENTS
Obtain a copy of the XTCF SDK from the following:

Space and Naval Warfare System Center, San Diego

Joint Tactical Information Systems Branch (Code 2734)

53560 Hull Street

San Diego, CA 92152-5001

Also, the XTCF development environment requires the following:

5-6

• Java Message Service (JMS; the XTCF Team has tested with SonicMQ version 5
and has done limited testing with JBoss version 4.0 and BEA WebLogic 8.1)

• Java SDK v1.4 – with JAVA_HOME environmental variable set to the location of
JAVA SDK

• Jakarta ANT v1.5.1 – with ANT_HOME environmental variable set to the
location of ANT

• MySQL v4.0.12 (optional for use with plug-in specific data)

• JMS v1.1 – with JMS_HOME environmental variable set to the location of JMS

4.2 TEDSERVICES SYSTEM REQUIREMENTS

The machine on which the client application is developed must have installed, at a
minimum, the TEDServicesAPI.jar and JDK 1.4.1. The TEDServicesAPI.jar file can be
downloaded at https://teds.navy.mil. Sample code, documentation, and the
TEDServicesAPI.jar file are included in the
TEDServicesClientApplicationDeveloperToolKit, which can be downloaded from the
site as well.

5 INSTALLATION
First obtain the distributions for TEDServices, XTCF, and EVIS Plug-ins. Then, follow
the installation instructions below. If you have any problems installing the SDKs and
plug-ins, review the troubleshooting tips section for assistance.

5.1 INSTALL TEDSERVICES [5]
1. Install the JDK 1.4.1, which can be obtained at:

http://java.sun.com/j2se/1.4.1/download.html

2. Place the downloaded TEDServices API jar file in the directory where you would
like it to permanently reside. (File initially resides in the directory:
TEDServicesClientApplicationDeveloperToolKit\TEDServicesAPI) For the
development of the plug-ins TEDServicesAPI.jar was placed in the
C:\XTCF\lib\tedservices directory.

3. Alter your classpath to include a pointer to the TEDServices API jar file.

4. The Fleet MetOc (Meteorological and Oceanographic) Advanced Concepts
Laboratory (FMACL) Developer TEDServices GateWay, 205.67.220.9, was used
to test the plug-ins. The REMOTE_GATEWAY variable is set in the batch file
that runs the plug-ins. To use this GateWay you need to import the supplied SSL
certificate into your JRE certificate database (keystore). To do this follow the
instructions outlined in section 5.1.1.

5-7

5. Compile and run the sample application provided at:
TEDServicesClientApplicationDeveloperToolKit\SampleCode\SystemTestApi.ja
va.

A script file is provided in that same directory to run the sample code. The script
file will require editing some paths relative to your machine. A script file has been
provided for Windows (RunSystemTestApi.bat) and a script file has been
provided for Linux (RunSystemTestApi).

This completes successful set up and testing of necessary components. You are now
ready to integrate your own application with the TEDServices API.

5.1.1 Install SSL Certificate [5]

All information sent and received to/from TEDServices is sent via a form of http called
https. Https is almost identical to http, but allows for secure communication using
encryption and authentication. This encryption/authentication is performed by the secure
socket layer (SSL). In order to communicate with TEDServices in a secure manner you
need to install a SSL certificate.

In Windows use:
"keytool -import -alias tedservices -keystore <PathToJRE>\lib\security\cacerts -file
<RemoteGatewayCert>\tedservices.cert -storepass changeit"

In the above command, <PathToJRE> should be replaced with the actual location of the
JRE install and <RemoteGatewayCert> should be replaced with the actual location of the
remote Gateway’s public certificate (tedservices.cert).

Example: "keytool -import -alias tedservices -keystore C:\jdk1.4.1\jre\lib\security\cacerts
-file c:\tedservices.cert -storepass changeit"

Note: Keytool is a java command located in the <PathToJRE>\bin. If the System path is
set, then the keytool command can be accessed without specifying the whole directory
path. If the system path is not set, then the absolute path should be specified when calling
Keytool.

Example: "c:\jdk1.4.1\jre\bin\keytool -import -alias tedservices -keystore
c:\jdk1.4.1\jre\lib\security\cacerts -file tedservices.cert -storepass changeit"

5.2 INSTALL XTCF
There are many ways to install XTCF. The following is how XTCF was installed for
these plug-ins. First, you need to copy the XTCF-Tools, XTCF-Docs, and XTCF folders
to the root directory. Set XTCF_HOME environmental variable set to the location of
XTCF. Then you will need to configure JBoss, set delayed expansion, and build XTCF
and the plugins.

5-8

5.2.1 JBoss Setup [7]

Perform the following steps to configure the JBoss JMS provider.

Prerequisites:

1. Install JBoss on all clients and servers. Open a Windows Explorer
window and navigate to the XTCF-Tools folder under XTCF. In the
Downloads folder open the jboss-4.0.0DR2.zip file and extract it to
C:\jboss-4.0.0DR2.

2. Create JBOSS_HOME environment variable. Set JBOSS to where it is
installed on local machine or where JBoss JMS Client JARs are locally
installed.

3. Increase the JVM memory by changing the JAVA_OPTS line in the
JBoss run.bat file. Edit the run.bat in the JBoss bin folder. Modify an
existing line by replacing rem with set in the set
JAVA_OPTS=%JAVA_OPTS% -Xms256m -Xmx512m line.

Step 1-Add Users.

To create the appropriate users for JBoss, copy the jbossmq-state.xml file from
the ${XTCF_HOME}\data\Config\JBoss\server\default\conf\ directory to the
following location:

${JBOSS_HOME}\server\default\conf\jbossmq-state.xml.

Step 2-Create topics and queues.

To create the appropriate topics and queues for JBoss, copy the following files
from the ${XTCF_HOME}\data\Config\JBoss\server\default\deploy\ directory to the
${JBOSS_HOME}\server\default\deploy\ directory:

xtcf-elint-rptmgr-service.xml

xtcf-elint-trkmgr-service.xml

xtcf-xema-service.xml

xtcf-xex-service.xml

xtcf-gale-service.xml

xtcf-midb-service.xml

xtcf-repository-service.xml

This causes JBoss to read and create the queues and topics automatically.

Note: Note these topics and queues are for the various plugins that are
included in the XTCF SDK. This procedure will be repeated
for xtcf-evis-service.xml when you install the plugins in section
5.3.

5-9

Step 3- In a command window run the setJBoss.bat or setJBoss.sh file in the
XTCF/bin directory.

Note: New JNDI properties do not need to be edited if running on
localhost, otherwise edit the jndi.properties file.

Step 4-Start JBoss.

Execute the run.bat file in the ${JBOSS_HOME}\bin directory.

5.2.2 Setting Delayed Expansion [7]

Before running the XTCF .bat files, ensure that the Windows system is enabled to delay
expansion of variables. This allows batch files to use environmental variables instead of
hard coded path names for access to commands or files. Run regedit in a Command
Prompt window. On the left-hand side of the window that appears, navigate to
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Command Processor

In the right window pane, look for a DelayedExpansion entry. If it does not appear, add it
by right clicking in the pane and creating a new DWORD entry. Edit the entry by double
clicking on it and set the data value to 1 (true).

5.2.3 Building XTCF [7]

The easiest way to compile and build XTCF is to open a Command Prompt window and
execute the XTCF-Setup.bat file from the XTCF-Tools folder. This will set up the build
time environment. The build needs two environment variables: XTCF_TGT and
JMS_HOME. The XTCF-Setup.bat file will set the JMS_HOME variable to the
XTCF_Tools\JMS1.1 folder, and it will set XTCF_TGT (the destination folder of the
build) to C:\XTCF. If a developer uses another version of the JMS JAR files or wishes to
change the destination folder location.

Note: Ant must be installed and configured on the build machine to
build XTCF. Running the XTCF-Setup.bat file in compiling
and building XTCF configures the system to use the jakarta-
ant-1.5.1 provided in the XTCF-Tools folder.

After running XTCF-Setup.bat file, go to the location of the XTCF source tree: XTCF-
SRC\xtcf. Type ant. Next go to the XTCF-SRC\xtcf-plugins directory. Type ant. Note
the Ant output in the Command Prompt window. A successful build will create class
files in the XTCF-SRC\xtcf\build and the XTCF-SRC\xtcf-plug-ins\build folders. Also,
the build output will populate C:\XTCF.

5.3 INSTALL PLUGINS
Obtain the Evis files (which will be in one folder called Evis), build.xml file, and xtcf-
evis-service.xml file from the author of this paper. Then perform the following steps.

6-10

Step 1-Create directories and copy files.

Create the following directory, C:\XTCF\XTCF-Plugins\xtcf-plugins\evis and copy the
entire contents of the evis folder into this directory. Next rename the build file
(build.xml), located at C:\XTCF\XTCF-Plugins\xtcf-plugins, old.build.xml.old. Then
copy the build file build.xml from the evis disk to C:\XTCF\XTCF-Plugins\xtcf-plugins.

Step 2-Create topics and queues.

Create the appropriate topics for evis by copying the xtcf-evis-service.xml file to the
${JBOSS_HOME}\server\default\deploy\ directory. This will allow JBoss to
read and create the evis topics automatically.

Note: The xtcf-evis-service.xml file was created by altering one of the xtcf-
???-service.xml files

Step 3- build plug-ins.

Open a Command Prompt window and execute the XTCF-Setup.bat file from the
XTCF-Tools folder. Then, change to the C:\XTCF\XTCF-Plugins\xtcf-plugins
directory and type ant. This will build all of the xtcf plugins, including the evis plugins.

6 WORK FLOW
This workflow describes how the Plugins work on a single computer, but they can be run
on separate computers that are pointed to a JMS server.

First open three command prompt windows. In the first one start JBoss.

6-11

Figure 6-1. JBoss Started

After you see that JBoss has started (Figure 6-1), in one of the other command prompt
windows run the batch file that starts the Plug-in that listens for the request for data
(Figure 6-2).

Figure 6-2. Reply Plug-In Listens for Request Messages

Then in the third window run the batch file that starts the Request plug-in and the EVIS
Request GUI will pop up (Figure 6-3).

6-12

Figure 6-3. EVIS Request GUI

The EvisRequestGUI (Figure 6-3) displays a JAVA window that has a dropdown list for
the user to select a parameter. The following is a list of the parameters used in this GUI.

ABSOLUTE_VORTICITY_ISOBAR_LEVEL

AIR_TEMPERATURE_HEIGHT_SURFACE

AIR_TEMPERATURE_ISOBAR_LEVEL

AIR_TEMPERATURE_MAX_WIND_LEVEL;

SALINITY

SEA_TEMPERATURE

SIGNIFICANT_WAVE_HEIGHT

SIGNIFICANT_WAVE_PERIOD

SOUND_VELOCITY

TAF

TOTAL_CLOUD_COVER_HIGH_CLOUD_LEVEL

TOTAL_CLOUD_COVER_LOW_CLOUD_LEVEL

TOTAL_CLOUD_COVER_MID_CLOUD_LEVEL

TOTAL_CLOUD_COVER_SKY_COVER

TOTAL_PRECIPITATION_MEAN_SEA_LEVEL

TOTAL_PRECIPITATION_SURFACE

 This is not a complete list of parameters that are supported by TEDServices. For a
complete list of available parameters, please contact TEDServices and request a copy of
the current ParameterNameLookup.txt file. Also, there are 4 input boxes that allow the
user to input latitude and longitudes for various areas of interest. All of which are filled
with default values when the program is run. Once the user has chosen the correct
parameter and AOI, they push the send request button. This calls the EVIS
PluginSender to send the request (Figure 6-4).

6-13

Figure 6-4. Request Plug-In Sends Request Message

The EVISPluginSender sets up the handler and creates a METOCREQUEST topic. It
creates an EVISRequestMessage object and copies the parameter and lat/longs into the
EVISRequestMessage object. Then it sends the message across the XTCF framework
using JBoss.

The Reply Plug-in, which was already started, created a listener and is listening for an
EVISRequestMessage on the METOCREQUEST topic. The EVISRequestReceiver sets
up a handler and creates a MODASREQUEST channel/topic to receive
EVISRequestMessages. Then it creates an EVISRequestListener.

The EvisRequestListener declares a new EVISRequestMessage object. It receives the
parameter and lat/longs from the EVISRequestMessage. Then it calls the EVISTestApi
method, which sends a request to TEDServices via TEDServices API. This method
creates a connection with the TEDServices Gateway and submits the request for grid data
for the parameter and AOI specified.

The grid data is returned in a three dimensional array. At the top of figure 6-5 the grid
data is returned with salinity values for the requested area of interest. There are 34 levels,
which represent various depths of the water and a 13 by 13 matrix for the salinity values
of the area at each level.

6-14

Figure 6-5. EVIS Receives and Returns TEDs Data

Once the EvisRequestListener has received the data from TEDServices and prints it to
the screen it sends a reply message (EVISMessage object) back to the requestor on the
METOCREPLY topic (Figure 6-5).

The computer that made the request for data using the EVIS Request GUI will get a pop
window titled EVIS Reply (Figure 6-6) that will display the grid data returned from the
request. Also, a file will be created and saved to the requesting computer in the
C:\evis\received directory with the returned data.

7-15

Figure 6-6. TEDs Data Received and Displayed in GUI

7 DATA
The numerical data that is returned from TEDServices via the plug-ins is in the form of
grid data. This is a raw form of data that can be displayed and analyzed by various
software tools and programs. For example, the Environmental Visualization (EVIS)
capability, which allows users to access weather effect products and enables forecasters
the ability to create weather products for mission planning, uses the Grid Analysis and
Display System (GrADS). GrADS is an interactive desktop tool, used to manipulate and
display grid data. The following example describes how grid data for salinity of a certain
AOI can be displayed.

7-16

Figure 7-1. Grid Data Display

The salinity of the ocean is a good example of how grid data is used. Salinity is
measured as the conductivity ratio of sea water to a standard solution. The values of
salinity constantly change as you move from one area to another forming a continuous
spatial gradient. The left-side of figure 7-1 shows the grid data and highlighted sub-sets
of salinity values used to depict the surfaces shown on the right-side.

Grid data is stored as an organized set of values in a matrix that is geo-registered. In this
example, each grid cell identifies a specific location and contains a map value
representing its salinity ratio. Also, grid data can represent various levels of the
atmosphere. In this case, the levels refer to the depth of the water in meters. The data in

1
2

3
4

5
6

7
8

9
10

11
12

13
S1

S2

S3

S4

S5

S6
S7

S8
S9

S10
S11

S12
S13

34.2

34.3

34.4

34.5

34.6

34.7

34.8

34.9

35

35.1

35-35.1

34.9-35

34.8-34.9

34.7-34.8

34.6-34.7

34.5-34.6

34.4-34.5

34.3-34.4

34.2-34.3

1 2 3 4
5

6
7

8
9

10
11

12
13

S1

S3

S5

S7

S9

S11

S13

34.2

34.3

34.4

34.5

34.6

34.7

34.8

34.9

35

35.1

35-35.1

34.9-35

34.8-34.9

34.7-34.8

34.6-34.7

34.5-34.6

34.4-34.5

34.3-34.4

34.2-34.3

8-17

the top of figure 7-1 is close to the surface of the water and the data at the bottom is about
12 meters below the surface. If all of the data from this example were shown you would
see 34 (13x13) matrices representing the salinity values for an area of interest at various
depths in meters.

8 TROUBLESHOOTING TIPS
The following are some issues to keep in mind when you are trouble shooting your code.

• Remember that when you compile the XTCF source code, XTCF_SRC, it
overwrites xtcf\bin. Also, it deletes and recreates xtcf\lib

• Ensure that the TEDServices jar file was added to your class path (i.e.
xtcf\lib\tedservices\).

• Check that Tedservices.cert is in the java keystore.

• Double check that Jboss is configured correctly and ensure that the Topics or
Queues are set up correctly.

• Check to ensure that all environment variables are set as follows:

o XTCF_HOME - Location of XTCF (defaults to XTCF)

o JMS_HOME - Location of JMS (defaults to XTCF-Tools)

o JAVA_HOME - Location of Java SDK (defaults to XTCF-Tools)

o ANT_HOME - Location of Ant (defaults to XTCF-Tools)

o JBOSS_HOME - Location of JBoss when this is the JMS provider

9-18

9 REFERENCES
[1] Berry, J.K. (2006). Map Analysis: Procedures and Applications in GIS Modeling.
BASIS Press. Retrieved August 21, 2006, from
http://www.innovativegis.com/basis/MapAnalysis/Topic18/Topic18.htm

[2] Chapell, D.A. & Monson-Haefel, R. (2001). Java Message Service. Sebastopol, CA:
O’Reilly Media.

[3] Filanowitcz, B. Knowledge Superiority and Assurance Future Naval Capability
Dynamic Command and Control Continuum Sea Trial (Technical Document 3193).
SPAWAR Systems Center San Diego.

[4] Harold, E.R. & Means, W.S. (2004). XML in a Nutshell: A Desktop Reference (3rd
ed.). Sebastopol, CA: O’Reilly Media.

[5] Naval Research Laboratory. TEDServices Client Application Developer Tool Kit
[Computer Software and Manual]. Retrieved August 27, 2004, from https://teds.navy.mil/

[6] Net-Centric Enterprise Solutions for Interoperability. (2005) NESI Part 5: Net-Centric
Developers Guide. Retrieved May 22, 2006, from http://nesipublic.spawar.navy.mil/

[7] Space and Naval Warfare Systems Center. Developer SOFTWARE INSTALLATION
GUIDE FOR THE EXTENSIBLE TACTICAL C4I FRAMEWORK (XTCF)Version 3.0
27 February 2004

[8] Space and Naval Warfare Systems Center. DEVELOPER GUIDE FOR THE
EXTENSIBLE TACTICAL C4I FRAMEWORK (XTCF) SOFTWARE
DEVELOPMENT KIT (SDK) Version 3.0 27 February 2004

9-19

APPENDIX A. ACRONYM LIST
ABA Advanced Battlespace Awareness
ACINT Acoustic Intelligence
ACTD Advanced Concept Technology Demonstration
ADSI Air Defense Systems Integration
AOI Area of Interest
API Application Programmer Interface
C2 Command and Control
C4I Command, Control, Communications, Computers, and Intelligence
CD Compact Disk
COE Common Operating Environment
COI Community of Interest
DID Data Item Description
DISA Defense Information Systems Agency
EVIS Environmental Visualization
FMACL Fleet METOC Advanced Concepts Laboratory
GCCS Global Command and Control System
GCCS-A Global Command and Control System-Army
GCCS-M Global Command and Control System-Maritime
GrADS Grid Analysis and Display System
GUI Graphical User Interface
HTTP Hyper Text Transfer Protocol
IEEE Institute of Electrical and Electronics Engineers, Inc.
J2EE Java 2 Platform Enterprise Edition
JBDC Java Database Connectivity
JMS Java Message Service
JNDI Java Naming and Directory Service
LAN Local Area Network
MetOc Metrological and Oceanographic
ONR Office of Naval Research
RPC Remote Procedure Call
SDK Software Development Kit
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SPAWAR Space and Naval Warfare Systems Command
SSC SPAWAR Systems Center
SSL Secure Socket Layer
XML eXtensible Markup Language
XSD XML Schema Document
XTCF Extensible Tactical C4I Framework

9-20

APPENDIX B. EVISMESSAGE.JAVA

// EVISMessage.java

// This file was automatically generated by XTCF codegen Version 2.0

//

package xtcf.samples.evis;

import javax.xml.namespace.QName;

import xtcf.xms.Packable.PackableObject;

import xtcf.xms.Packable.PackableSerializationException;

import xtcf.xms.Packable.MessageData;

import xtcf.xms.Packable.MessageItem;

/**

* The EVISMessage class objects represent Java runtime

* instantiations of EVISMessage XTCF messages.

*

*/

public class EVISMessage extends PackableObject

{

 public EVISMessage()

 {

 }

 public EVISMessage(String fileNameValue, byte[] fileContentValue)

 {

 this();

 setFileName(fileNameValue);

 setFileContent(fileContentValue);

 }

 // static message item list

 private static MessageItem[] messageItems = {

 new MessageItem(EVISMessage.class, "FileName",
DbDataType.DBT_STRING, 0, "", null, false),

9-21

 new MessageItem(EVISMessage.class, "FileContent",
DbDataType.DBT_BYTE_ARRAY,
PackableObject.MessageItemFlags.MIF_HEX_ENCODE, "", null, false),

 };

 static String comments = "";

 private static MessageData messageData = new MessageData(
EVISMessage.class, messageItems, 0, "EVISMessage", "PackableObject",
comments, "urn:evis.samples.xtcf", "EVISMessage.xsd" , false);

 static {

 int n = 0;

 messageItems[n].setMinOccurs(1);

 messageItems[n].setMaxOccurs(1);

 messageItems[n].setItemQName(new QName("", "FileName"));

 messageItems[n].setTypeQName(new QName(
"http://www.w3.org/2001/XMLSchema", "string"));

 n++;

 messageItems[n].setMinOccurs(1);

 messageItems[n].setMaxOccurs(1);

 messageItems[n].setItemQName(new QName("", "FileContent"));

 messageItems[n].setTypeQName(new QName(
"http://www.w3.org/2001/XMLSchema", "hexBinary"));

 n++;

 };

 /**

 * Get full description of message, including array of items.

 */

 public MessageData getMessageData()

 {

 return messageData;

 }

 /**

 * Get array of message items.

 */

9-22

 public MessageItem[] getMessageItems()

 {

 return messageItems;

 }

 public void setFileName(String value)

 {

 try {

 this.setValue("FileName", value);

 }

 catch (PackableSerializationException pse)

 {

 System.out.println(pse.getMessage());

 pse.printStackTrace();

 }

 }

 public String getFileName()

 {

 try {

 return (String)this.getValue("FileName");

 }

 catch (PackableSerializationException pse)

 {

 System.out.println(pse.getMessage());

 pse.printStackTrace();

 }

 return "";

 }

 public void setFileContent(byte[] value)

 {

 try {

 this.setValue("FileContent", value);

 }

 catch (PackableSerializationException pse)

 {

9-23

 System.out.println(pse.getMessage());

 pse.printStackTrace();

 }

 }

 public byte[] getFileContent()

 {

 try {

 return (byte[])this.getValue("FileContent");

 }

 catch (PackableSerializationException pse)

 {

 System.out.println(pse.getMessage());

 pse.printStackTrace();

 }

 return null;

 }

}

